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I am an Associate professor in the department of Mathematical Sciences at Carnegie Mellon University,
where I have been a member of the faculty since 2013. I received my Ph.D. in Mathematics from Rutgers
University in 2010 under the supervision of József Beck, and I am an expert on stochastic processes and
discrete probability. My research is funded by the National Science Foundation and the Sloan Foundation.
A current CV with a list of publications is attached as Exhibit A. A list of my publications with links to
online manuscripts is also available at my website at http://math.cmu.edu/~wes.

In early 2017 I published a paper[1] which gave a new statistical test to demonstrate that a configuration
is unusual from among a set of candidate configurations, with my coauthors Maria Chikina and Alan Frieze.
Our paper, which was published in the Proceedings of the National Academy of Sciences, shows that a simple
and intuitive procedure can demonstrate that a given configuration is an outlier in a rigorous statistical sense,
and in that paper, we showed that our test can be used to demonstrate that a Congressional districting is
gerrymandered. A copy of the paper is attached as Exhibit B. Probability is a central aspect of my research;
as shown on my CV, I have published papers in several well-regarded journals in probability, including Annals
of Applied Probability and Random Structures and Algorithms. Many of these papers are also collaborations
between myself and Alan Frieze, one of my co-authors on the [CFP] paper.

Our PNAS paper (including preliminary analyses of Pennsylvania’s Congressional districting) was pub-
lished before I was contacted by the lawyers for the present case. I am being compensated at a rate of $250
per hour for my work on the current case.

1 Executive Summary

I was asked to analyze whether the current districting of Pennsylvania is an outlier with respect to partisan
bias (as opposed to having partisan bias which might be typical of districtings of Pennsylvania, given its
political geography). In my analysis, I find that the present Congressional districting of Pennsylvania is
indeed a gross outlier with respect to partisan bias, among the set of all possible districtings of Pennsylvania.

My analysis (as in [CFP]) works by testing whether the partisan bias in the current districting is fragile,
in the sense that it evaporates when many random small changes are made to the districting. I find that
when I begin from the current districting and make roughly 1 trillion of these changes in succession, the
districting quickly develops less partisan bias. In particular, the current districting of Pennsylvania exhibits
more partisan bias than roughly 99.999999% of districtings encountered in such a sequence of small changes,
demonstrating that the current Congressional districting was very carefully crafted to ensure a Republican
advantage.

Our analysis goes even further than this, however. As discussed in Section 4, our theorem proved
in [CFP] establishes that it is mathematically impossible for the political geography of a state to cause
such a result. That is: while political geography might conceivably interact with traditional districting

[1]M. Chikina, A. Frieze, W. Pegden. Assessing significance in a Markov Chain without mixing, in Proceedings of the National
Academy of Sciences 114 2860–2864, hereafter [CFP]. PNAS is the official journal of the National Academy of Sciences, and
one of the most cited journals across all fields of science. (Articles in PNAS are peer-reviewed.)

1



criteria to create a situation where typical districtings of a state are biased in favor of one party, it is
mathematically impossible for the political geography of a state to interact with traditional districting
criteria to create a situation where typical districtings of a state quickly exhibit a fragile partisan bias, which
quickly evaporates when small changes are made. Quantitatively, the [CFP] theorem tells us that more
than 99.99% of the possible Congressional districtings of Pennsylvania would pass our gerrymandering test,
showing in a mathematically rigorous way that the present districting was an extremely careful choice made
to maximize partisan advantage.

In particular, I find that Pennsylvania’s Congressional districting is a gross outlier with respect
to partisan bias in a way that is mathematically impossible to be caused by political geography
and the traditional districting criteria I consider.

2 Topic of Expert Report

Election results from Pennsylvania show that Republicans have enjoyed a strong advantage in Congressional
elections in Pennsylvania, winning 13 out of 18 seats even in years when Democrats win a majority of
statewide Congressional votes.

Though striking, this fact alone does not necessarily mean that Pennsylvania’s districting was drawn to
give Republicans advantage; a priori, it could conceivably be the case that traditional redistricting goals and
Pennsylvania’s unique political geography could interact to produce a Republican advantage even with an
unbiased districting process.

To address this question, petitioners’ counsel asked me to analyze whether the Republican advantage
in the current Congressional districting of Pennsylvania could be a consequence of nonpartisan factors such
as the political geography of the state. In particular, my analysis addresses the question: is the current
districting a typical member of the set of possible districtings of Pennsylvania, with respect to its partisan
bias? Or is it a gross outlier? We will see, in fact, that my analysis shows that the current Congressional
districting of Pennsylvania is more unusual than the vast majority of districtings with respect to partisan
bias.

3 A conservative notion of gerrymandering

For the purposes of this expert report, my analysis is predicated on a very conservative definition of what
constitutes a gerrymandered districting of a state. In particular, I will not call a districting gerrymandered
simply because it is more favorable to one party than to the other in terms of the number of seats it leads to
for each party. I will not even call a districting gerrymandered simply because there were alternative plans
available to the mapmakers with less partisan bias which they chose not to use. Instead, my analysis calls a
districting gerrymandered only if it passes the following Tests (T1),(T2),(T3):

(T1) The districting has a partisan bias for one party;

(T2) Small random changes to the districting rapidly decrease the partisan bias of the districting, demon-
strating that the districting was carefully crafted; and,

(T3) The overwhelming majority of all alternative districtings of the state exhibit (T1), (T2) less than the
districting in question.

In particular, when I report that Pennsylvania’s 2011 Congressional districting is gerrymandered, I mean
not only that there is a partisan advantage for Republicans and that districtings with less partisan bias were
available to mapmakers, but indeed that among the entire set of available districtings of Pennsylvania, the
districting chosen by the mapmakers was an extreme outlier with respect to partisan bias, in a statistically
rigorous way.
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To make Test (T3) precise, I have a model for what would constitute a valid Congressional districting of
Pennsylvania. For example, it is reasonable to expect that mapmakers drawing the Congressional districting
of Pennsylvania want a districting with the following Properties:

(P1) The districting consists of 18 contiguous districts.

(P2) The districting has equipopulous districts. For example, I can require that the populations of
districts differ by less than 2%.

(P3) The districting has reasonably shaped (“compact”) districts. There are various ways proposed
in the literature to quantify this; for example, one can simply impose an upper allowable limit on the
total perimeter of all 18 districts.

Specifying constraints such as these determines a “bag of districtings” which are candidate districtings
of the state. I find that the current districting of the state is an extreme outlier with respect to partisan bias
in the sense of (T3), compared with the set of all districtings in this bag.

Moreover, I show that this finding is robust to exactly how I define the bag of districtings. For example:
I can define a bag where populations of districts differ by < 1% instead of < 2% in implementing property
(P2). I define bags of districtings with alternative metrics for implementing property (P3). I can impose
additional constraints on the bag of districtings to align with other hypothetical redistricting criteria to
ensure, for example, that:

(P4) The districting does not divide any counties not divided by the current map of Pennsylvania.

(P5) The districting includes the current District 2, a Majority-Minority district, intact, in case
it was drawn to comply with the Voting Rights Act.

I show that my finding of the extreme outlier status of Pennsylvania is robust to all of these various
choices one might make in defining the bag of districtings.

It is important to note that, for all of these choices I consider for how to define the bag of districtings,
my parameters are chosen so that the 2011 districting meets all of corresponding requirements under con-
sideration. In particular, my goal is not to compare the current districting to other “better” districtings
which satisfy stricter requirements on the shapes of the districts, etc. Instead, my test assumes the geomet-
ric properties of the current districting are reasonable, and compares the districting to the other possible
districtings of Pennsylvania with the same properties[2].

Note on population constraint

As we see in Property (P2), my method does not enforce 0% population difference on districts in the
comparison districtings. My method does not simulate the results of elections for hypothetical elections at
the per-person level, as direct voter preference data is not available at sufficient granularity. In particular,
note that the Census does not ask individuals for political preference information. Note that this same
limitation faces mapmakers who might try to draw a favorable districting for their party; a practical approach
is to first use the available data to draw a “coarse” map with the desired properties, and then make small,
negligible changes to the map to satisfy the population constraint. Using a population threshold of around
2% is reasonable, because

• A 2% threshold is small in magnitude compared to estimates of the actual error in the Census. In
particular, in the 2010 Decennial Census in question, an estimated 3.3% of counts were erroneous

[2]I am not asserting that I consider the geometry of the current map reasonable. However, my analysis accepts the geometric
properties of the present districting, to show that even compared to its geometrically similar peers, the map is an extreme
outlier.
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(e.g., double-counts), while an estimated 5.3% of individuals went uncounted[3], and these errors are
correlated with demographic and geographic factors.

• The small population variation in my comparison districtings cannot account for the extreme outlier
status I encounter. For example, in my tests, my measure of partisan bias for a districting decreases
by a factor of two or more after the sequence of swaps are made, not just by a few percent. This means
that even if the maps found by my method after many changes were altered to have equal (up to 1
person) populations, they would still exhibit less partisan bias than the initial maps.

• The particular threshold that I use does not affect our outcome. In particular, if using a 0% threshold
would be very different from using a 2% threshold, then I should already see signs of trouble when
using a 1% threshold, which is not the case.

4 Mechanics of the method

My goal is to make a statistical comparison of the current Congressional districting of Pennsylvania to the
other members of the “bag of districtings” used for comparison. The simplest way to do this would be to
simply choose many random districtings from the bag of districtings, to evaluate whether typical districtings
of Pennsylvania exhibit less partisan bias than the the 2011 districting. However, there is no general purpose
algorithm known which can accomplish this task[4]. The significance of the

√
ε-test from [CFP] is that it

gives a simple and elegant way around this problem[5].

For districtings, the test from [CFP] works like this:

1. We begin from the 2011 Congressional districting of Pennsylvania.

2. We randomly select a Census tract on the boundary of 2 districts. We check: if we swap which district
this tract belongs to, will the districting still satisfy all the constraints on our bag of districtings? If
so, we make the swap.

3. Using voter preference data, we evaluate the partisan bias of the new districting and record whether
it is more or less biased than the 2011 districting.[6]

4. We repeat Steps 2 and 3 for n steps, for any fixed number n. We report that the 2011 districting
was gerrymandered if the overwhelming majority of districtings encountered by the test exhibited less
partisan bias than the 2011 districting.

In my tests I take n to be 240 = 1, 099, 511, 627, 776 ≈ 1 trillion. (The test is equally valid for any n, and
more powerful the larger I make n.) Because the tests run slower when using the 1% population constraint
instead of the 2% population constraint, those runs are conducted with 239 (just over 1

2 trillion) steps. Our
test can be run on a standard personal computer; information on how to obtain our software package and
the necessary input data is given in Appendix A.

The results in the next section show that the 2011 districting is more biased than the overwhelming
fraction of districtings encountered by the test. For this analysis, I carried out 8 runs of the [CFP] test

[3]H. Hogan, P.J. Cantwell, J.Devine, V.T. Mule Jr., and V. Velkoff. Quality and the 2010 Census, in Population Research
and Policy Review 32 (2013) 637–662.

[4]In mathematical language, the problem is how to draw efficient random samples from a possibly slowly “mixing” Markov
Chain; this is a general problem which occurs throughout scientific disciplines where Markov Chains are used, i.e., in protein
folding in microbiology, in statistical physics, and in simulations of chemical reactions. In this context, a Markov Chain is a
way of generating a random sample through a series of small changes.

[5]Note that the number of districtings in the comparison bag can be astronomical; larger than the number of elementary
particles in the known universe, for example, so we cannot simply look at them one by one for a comparison.

[6]We do this using the Median vs. Mean test, which simply compares the medians and the means of the Republican/Democrat
splits in each district. This is discussed in Section A.3. Our Results section also contains analyses showing the 2011 districting
is an outlier with respect to anti-competitiveness, in addition to partisan bias; we quantify anti-competitiveness of districtings
using the variance of the Republican/Democrat splits.
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with various constraints, and I consistently find that it is worse than roughly 99.9999999% of encountered
districtings. For one of my eight runs, I even find that the initial (current) Congressional districting
of Pennsylvania exhibits more partisan bias than every other of the more than 1 trillion
districtings encountered by the test. In other words, not only does Pennsylvania’s 2011 districting
exhibit a strong partisan bias (T1), but it satisfies (T2) to an extreme degree.

Even without applying the mathematical theorem from [CFP], this gives strong intuitively clear
evidence of intent to create partisan bias in the districting: since the test shows that making small
changes invariably makes the districting have less partisan bias, it is natural to conclude that the districting
was carefully drawn to create partisan bias.

The theorem from [CFP] allows me to translate this intuition into a rigorous statement about how unusual
the districting is in the whole bag of possible alternatives. In other words, it gives a formula which can be
used to deduce Test (T3) for a districting when it strongly satisfies Test (T2). In particular, the [CFP]
theorem, in the districting case, says the following:

√
ε test:

• Suppose that we have run the above test with Pennsylvania’s 2011 Congressional districting as the
initial districting, and that we have observed that only an ε fraction of districtings we encounter in our
test have partisan bias as strong as the 2011 districting. (For example, perhaps ε = .000000005, which
means that the initial districting had more partisan bias than 99.9999995% of districtings.)

• The theorem from [CFP] says that among all possible districtings in the bag of alternatives, a randomly
chosen districting would perform this badly at most p =

√
2ε of the time. For ε = .00000000005, for

example, we would conclude that a randomly chosen districting could have probability at most

p =
√

2× .00000000005 = .00001 = 00.001%

of appearing as biased[7].

One way of interpreting the point of the theorem is as follows: as mentioned in Section 2, it is possible
for political geography to make a state more favorable to one party or the other. (For example, Democrats,
clustered in cities, could conceivably “waste” more votes even for districtings drawn without bias.) This
means that in principle, if one only looks at election outcomes under the districting in question without
considering how alternative districtings behave, political geography might conceivably give a false impression
that a districting was drawn with bias, whereas really it was not.

The same is not true for the “small changes” test I perform in this analysis, as a consequence of the
[CFP] theorem. In particular, the [CFP] theorem tells us that it is mathematically impossible for a state’s
political geography to inherently produce partisan bias that evaporates quickly when small random changes
are made to the state’s districting. In other words, when a districting strongly satisfies Test (T2), then it
must also satisfy Test (T3), regardless of the political geography of the state. Thus, political geography
cannot fool my analysis into calling a districting an outlier.

5 Results

Each row shows the results of the test for various conditions on the bag of districtings. In the compactness
measure column, “Avg. P.P” indicates that the average of the (inverse) Polsby-Popper compactness values
for the districts was constrained, while “perimeter” indicates that the total perimeter of all districts was
constrained. These choices are discussed in Section A.1.

This table presents our analysis for two properties of the districting: our analysis for partisan bias, and
an additional analysis for the anti-competitiveness of the districting. These two tests are done exactly the

[7]Note that this is just an upper bound; the true probability is likely to be even lower. To estimate it directly, however,
would require a method of directly choosing random districtings from the bag.
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Figure 1: Examples of maps encountered in the small changes test. The large map at the top is the initial
(current) districting. These maps are from the run corresponding to the 2nd row of our results table. In
particular, only geometry and population are constrained. To produce these maps, our algorithm simply
saved a map every 10 · 231 = 21, 474, 836, 480 ≈ 20 billion steps.
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Figure 2: These examples are from the 6th row of our results table. In particular, careful inspection shows
that precincts in District 2 remain assigned to District 2 in these maps, and that several rural districts
experience few changes since large portions of their boundaries are county boundaries which this run is
required to preserve. Again, examples were taken every 10 · 231 steps.
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same way, except that for the partisan bias test, districtings encountered by the test are evaluated using
the Median vs Mean test, while for the competitiveness test, districtings are evaluated according to the
variance of the number of Democrats / Republicans in each district. These measures of partisan bias and
competitiveness are discussed in Section A.3.

For each test, the ε column is the fraction of districtings encountered in the run of the test for that row
which exhibited as much partisan bias (or anti-competitiveness) as the initial (current) districting, and the
p column, computed as above as

√
2ε, is the statistical significance of the observation; in other words, it is

the probability that chance alone could lead to the bias measured by the test in that case (regardless of the
political geography of the state)[8].

partisan bias anti-competitiveness

population

threshold
compactness

measure

preserve

counties?
freeze

dist. 2?
ε-outlier
at ε =

significant
at p =

ε-outlier
at ε =

significant
at p =

2% perimeter No No .00000000058 .000034 .000000031 .00025

2% Avg. P.P No No .00000000057 .000034 .000000000051 .000011

2% perimeter Yes No .0000000013 .000051 .000000032 .00025

2% avg. P.P. Yes No .00000000000017 .00000058 .00000000042 .000029

2% perimeter Yes Yes .00000000050 .000032 .0000000000049 .0000032

2% avg. P.P. Yes Yes .00000000097 .000045 .0000000000048 .0000031

1% perimeter Yes Yes .00000000038 .000028 .0000000000099 .0000045

1% avg. P.P. Yes Yes .00000000053 .000033 .0000000000096 .0000044

For example, the first row of the table indicates that when I used a 2% bound for the population constraint,
constrained the compactness of districts using the total perimeter of the districting, ignored the preservation
of counties and did not freeze the Majority-Minority district #2, I found that only a .00000000058 fraction
of districtings encountered in the test showed as much partisan bias as the current districting, an observation
which our theorem shows can happen with probability at most 00.0034% for a typical districting, regardless
of the political geography of the state.

Our finding is that Pennsylvania is dramatically gerrymandered; its current Congressional districting
is an extreme outlier among the set of possible alternatives, in a way that it is insensitive to
how precisely I define the set of alternatives.

A Technical details

In this appendix I discuss some technical details regarding the preparation of our results. For a more
precise account of our methods, the precise mathematical statement of the theorem I am employing, and its
mathematical proof, I point the reader to our paper [CFP].

The software package implementing our test can be downloaded from the following URL:

http://math.cmu.edu/~wes/files/markovchain.tgz

[8]It is actually possible for the ε column to be slightly smaller than 1 in 1 trillion, as happens with the 4th row. This is
because we run the test until 240 swaps have succeeded, which in general, takes a bit more than 240 steps; in particular, the
same map may serve as a comparison multiple times in a sequence. This consideration of repeated maps is necessary to ensure
that each map is given equal weight for the purpose of comparison. (In technical terms, it ensures that the uniform distribution
is a stationary distribution for our Markov Chain.) For the technical details and reasons behind this phenomenon, we refer the
reader to [CFP].
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This package contains both the code and input files necessary to run our tests (and generate the maps
shown in Figures 1 and 2 of this report). It includes a README file which describes the installation and use
of the package in a standard Linux environment. The input files distributed with the package are derived
(as described in [CFP]) from the 2010 Pennsylvania data from the Harvard Election Data Archive, available
here:

http://hdl.handle.net/1902.1/16389

A.1 Compactness measure

Various precise metrics have been proposed to quantify the compactness of a given district mathematically.
One of the simplest and most commonly used metrics is the Polsby-Popper metric, which simply considers
the ratio of the area of the district to the square of its perimeter. (This is sensible because for “nice” shapes
such as circles and squares, the area grows roughly as the square of the perimeter, up to constant factors.)

In particular, mathematically, one computes the Polsby-Popper compactness as

CD =
4πAD

P 2
D

,

where AD and PD are the area and perimeter of the district D. Here 4π is a normalizing constant which
simply ensures that the the maximum value of this measure is 1 (which would be achieved only by a
perfectly circular district). All other shapes have compactness between 0 and 1, and smaller values indicate
more “contorted” shapes. The inverse of the P.P. compactness is a number between 1 and ∞, with higher
numbers indicating more contorted shapes.

In our results table, rows whose compactness measure is indicated as “avg. P.P.” had their compactness
constrained by a threshold on the average of the inverse of the Polsby-Popper metric of the 18 districts in
the districting; this value is approximately 156.4 for the initial districting, and the threshold for these runs
was set at 160.

Rows whose compactness measure is indicated as “perimeter” had their compactness constrained by a
threshold on the total perimeter of the 18 districts in the districting. This is approximately 121.2 for the
initial districting, and our threshold was set at 125[9].

A.2 Voter preference

To assess the partisan bias of a given districting, it is necessary to have an estimate of voter preferences in
each “Census tract” from which districtings are assembled.

As a proxy for partisan bias I use the election results from the 2010 Pennsylvania senate race between
Pat Toomey and Joe Sestak. This race has several characteristics which make it an excellent proxy for voter
preference:

• It was a statewide race;

• there was no incumbent in the race; and,

• it was among the most recent data available to the mapmakers when drawing the currently contested
districting.

Of course no proxy for voter preference is perfect; however, any imperfect relationship between this proxy
and true voter preference only decreases the sensitivity of our test. In particular, the fact that we have only
imperfect proxies for true voter preference makes it harder to detect gerrymandering, not easier, since my
analysis will only call a districting gerrymandered when it is carefully crafted relative to the voter preference
proxy I am using.

[9]The units for these values are in the coordinate system of the Census shapefiles, and correspond to roughly 100km.

9



A.3 Metrics for partisan bias and competitiveness

Our test can be applied using any standard metrics to evaluate districtings. To evaluate the partisan bias of
districtings, I used the Median vs. Mean test (called the Symmetry Vote Bias test by McDonald and Best[10]),
a metric which has been used to evaluate partisan advantage in districting since the 19th century[11].

The Median vs. Mean test can be carried out very simply for any districting as follows. First one lists
the fraction of each district which are expected to vote for Republicans. For example X1 is this fraction for
district 1, X2 for district 2, and so on. In particular, the mean of X1, . . . , X18 is just the overall fraction of
the state which we expect to vote for Republicans (assuming each district has roughly the same number of
voters).

The Median vs. Mean test simply returns the difference between the median and mean of these numbers. If
the difference between the median and the mean is positive, this indicates an advantage for the Republicans,
and if the difference is negative, it indicates an advantage for the Democrats. (If the Xi’s represented
Democrats’ shares of votes, this relationship would just be reversed.)

To give just a rough intuition for the motivation for the metric, suppose that the median of the Xi’s is
50%; this means that Republicans are winning half the seats (since 50% is the threshold for them to win an
election). Now if the mean of the Xi’s is much smaller than 50%, it means they are winning half the seats
even though they have a small minority of the total votes, since the mean of the Xi’s is just the overall level
of support for Republicans.

I quantify the competitiveness of districtings by simply measuring the variance of the Xi’s, computed as
the average of the squares of the Xi, minus the square of the average:

X2
1 +X2

2 + · · ·+X2
18

18
−

(
X1 +X2 + · · ·+X18

18

)2

.

Put differently, the variance of the Xi’s is just the square of the standard deviation of the Xi’s, and so this
is just a measure of how far the Xi’s are from their mean. For example, when the variance is high, it means
that there are districts that are significantly more Republican than the statewide average, and districts
that are significantly more Democratic than the statewide average. For districtings where the variance is
especially large compared with alternative districtings, this means that there are especially anti-competitive
districts. In short, high variance means anti-competitive districtings, while low variance means competitive
districtings[12].

I hereby certify that the foregoing statements are true and correct to the best of my knowledge, informa-
tion, and belief. This verification is made subject to the penalties of 18 Pa.C.S. §4904 relating to unsworn
falsification to authorities.

Wesley Pegden
11/27/17

[10]M.D. McDonald and R.E. Best. Unfair Partisan Gerrymanders in Politics and Law: A Diagnostic Applied to Six Cases, in
Election Law Journal 14 (2015) 312–330.
[11]F.Y. Edgeworth. Miscellaneous applications of the Calculus of Probabilities, in the Journal of the Royal Statistical Society
60 (1897) 681–698.
[12]See for example, the section “Partisan Outcomes by Congressional District and State”, in S.M. Theriault, Party polarization
in Congress. Cambridge University Press, 2008. His use of the standard deviation is equivalent to our use of the variance.
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We present a statistical test to detect that a presented state of
a reversible Markov chain was not chosen from a stationary dis-
tribution. In particular, given a value function for the states of
the Markov chain, we would like to show rigorously that the pre-
sented state is an outlier with respect to the values, by establish-
ing a p value under the null hypothesis that it was chosen from
a stationary distribution of the chain. A simple heuristic used in
practice is to sample ranks of states from long random trajecto-
ries on the Markov chain and compare these with the rank of the
presented state; if the presented state is a 0.1% outlier compared
with the sampled ranks (its rank is in the bottom 0.1% of sam-
pled ranks), then this observation should correspond to a p value
of 0.001. This significance is not rigorous, however, without good
bounds on the mixing time of the Markov chain. Our test is the
following: Given the presented state in the Markov chain, take a
random walk from the presented state for any number of steps.
We prove that observing that the presented state is an ε-outlier
on the walk is significant at p =

√
2ε under the null hypoth-

esis that the state was chosen from a stationary distribution.
We assume nothing about the Markov chain beyond reversibil-
ity and show that significance at p≈

√
ε is best possible in gen-

eral. We illustrate the use of our test with a potential applica-
tion to the rigorous detection of gerrymandering in Congressional
districting.

Markov chain | mixing time | gerrymandering | outlier | p value

The essential problem in statistics is to bound the probabil-
ity of a surprising observation under a null hypothesis that

observations are being drawn from some unbiased probability
distribution. This calculation can fail to be straightforward for
a number of reasons. On the one hand, defining the way in
which the outcome is surprising requires care; for example, intri-
cate techniques have been developed to allow sophisticated anal-
ysis of cases where multiple hypotheses are being tested. On
the other hand, the correct choice of the unbiased distribution
implied by the null hypothesis is often not immediately clear;
classical tools like the t test are often applied by making sim-
plifying assumptions about the distribution in such cases. If the
distribution is well-defined but is not be amenable to mathemat-
ical analysis, a p value can still be calculated using bootstrapping
if test samples can be drawn from the distribution.

A third way for p value calculations to be nontrivial occurs
when the observation is surprising in a simple way and the null
hypothesis distribution is known but where there is no simple
algorithm to draw samples from this distribution. In these cases,
the best candidate method to sample from the null hypothesis is
often through a Markov chain, which essentially takes a long ran-
dom walk on the possible values of the distribution. Under suit-
able conditions, theorems are available that guarantee that the
chain converges to its stationary distribution, allowing a random
sample to be drawn from a distribution quantifiably close to the
target distribution. This principle has given rise to diverse appli-
cations of Markov chains, including to simulations of chemical
reactions, Markov chain Monte Carlo statistical methods, pro-
tein folding, and statistical physics models.

A persistent problem in applications of Markov chains is the
often unknown rate at which the chain converges with the sta-
tionary distribution (1, 2). It is rare to have rigorous results on
the mixing time of a real-world Markov chain, which means that,
in practice, sampling is performed by running a Markov chain
for a “long time” and hoping that sufficient mixing has occurred.
In some applications, such as in simulations of the Potts model
from statistical physics, practitioners have developed modified
Markov chains in the hopes of achieving faster convergence (3),
but such algorithms have still been shown to have exponential
mixing times in many settings (4–6).

In this article, we are concerned with the problem of assess-
ing statistical significance in a Markov chain without requiring
results on the mixing time of the chain or indeed, any special
structure at all in the chain beyond reversibility. Formally, we
consider a reversible Markov chainM on a state space Σ, which
has an associated label function ω : Σ→<. (The definition of
Markov chain is recalled at the end of this section.) The labels
constitute auxiliary information and are not assumed to have any
relationship to the transition probabilities ofM. We would like
to show that a presented state σ0 is unusual for states drawn from
a stationary distribution π. If we have good bounds on the mix-
ing time ofM, then we can simply sample from a distribution of
ω(π) and use bootstrapping to obtain a rigorous p value for the
significance of the smallness of the label of σ0. However, such
bounds are rarely available.

We propose the following simple and rigorous test to detect
that σ0 is unusual relative to states chosen randomly according
to π, which does not require bounds on the mixing rate ofM.

The
√
ε test. Observe a trajectory σ0, σ1, σ2 . . . , σk from the

state σ0 for any fixed k . The event that ω(σ0) is an ε-outlier
among ω(σ0), . . . , ω(σk ) is significant at p =

√
2ε under the null

hypothesis that σ0∼π.
Here, we say that a real number α0 is an ε-outlier among

α0, α2, . . . , αk if there are, at most, ε(k + 1) indices i for which

Significance

Markov chains are simple mathematical objects that can be
used to generate random samples from a probability space
by taking a random walk on elements of the space. Unfortu-
nately, in applications, it is often unknown how long a chain
must be run to generate good samples, and in practice, the
time required is often simply too long. This difficulty can pre-
clude the possibility of using Markov chains to make rigorous
statistical claims in many cases. We develop a rigorous sta-
tistical test for Markov chains which can avoid this problem,
and apply it to the problem of detecting bias in Congressional
districting.
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αi ≤α0. In particular, note for the
√
ε test that the only relevant

feature of the label function is the ranking that it imposes on the
elements of Σ. In SI Text, we consider the statistical power of
the test and show that the relationship p≈

√
ε is best possible.

We leave as an open question whether the constant
√

2 can be
improved.

Roughly speaking, this kind of test is possible, because a
reversible Markov chain cannot have many local outliers (Fig. 1).
Rigorously, the validity of the test is a consequence of the follow-
ing theorem.

Theorem 1.1. Let M=X0,X1, . . . be a reversible Markov
chain with a stationary distribution π, and suppose the states of
M have real-valued labels. If X0∼π, then for any fixed k , the
probability that the label of X0 is an ε-outlier from among the
list of labels observed in the trajectory X0,X1,X2, . . . ,Xk is, at
most,

√
2ε.

We emphasize that Theorem 1.1 makes no assumptions on the
structure of the Markov chain beyond reversibility. In particular,
it applies even if the chain is not irreducible (in other words, even
if the state space is not connected), although in this case, the
chain will never mix.

In Detecting Bias in Political Districting, we apply the test
to Markov chains generating random political districting for
which no results on rapid mixing exist. In particular, we show
that, for various simple choices of constraints on what con-
stitutes a “valid” Congressional districting (e.g., that the dis-
tricts are contiguous and satisfy certain geometric constraints),
the current Congressional districting of Pennsylvania is signifi-
cantly biased under the null hypothesis of a districting chosen
at random from the set of valid districting. (We obtain p values
between ≈ 2.5 ·10−4 and ≈ 8.1 ·10−7 for the constraints that we
considered.)

One hypothetical application of the
√
ε test is the possibility of

rigorously showing that a chain is not mixed. In particular, sup-
pose that Research Group 1 has run a reversible Markov chain

Fig. 1. This schematic illustrates a region of a potentially much larger
Markov chain with a very simple structure; from each state seen here, a
jump is made with equal probability to each of four neighboring states. Col-
ors from green to pink represent labels from small to large, respectively. It
is impossible to know from this local region alone whether the highlighted
green state has unusually small label in this chain overall. However, to an
unusual degree, this state is a local outlier. The

√
ε test is based on the fact

that no reversible Markov chain can have too many local outliers.

for n1 steps and believes that this was sufficient to mix the chain.
Research Group 2 runs the chain for another n2 steps, producing
a trajectory of total length n1 +n2, and notices that a property of
interest changes in these n2 additional steps. Heuristically, this
observation suggests that n1 steps were not sufficient to mix the
chain, and the

√
ε test quantifies this reasoning rigorously. For

this application, however, we must allow X0 to be distributed not
exactly as the stationary distribution π but as some distribution
π′ with total variation distance to π that is small, as is the sce-
nario for a “mixed” Markov chain. In SI Text, we give a version
of Theorem 1.1, which applies in this scenario.

One area of research related to this manuscript concerns
methods for perfect sampling from Markov chains. Beginning
with the Coupling from the Past (CFTP) algorithm of Propp and
Wilson (7, 8) and several extensions (9, 10), these techniques are
designed to allow sampling of states exactly from the station-
ary distribution π without having rigorous bounds on the mix-
ing time of the chain. Compared with the

√
ε test, perfect sam-

pling techniques have the disadvantages that they require the
Markov chain to possess a certain structure for the method to be
implementable and that the time that it takes to generate each
perfect sample is unbounded. Moreover, although perfect sam-
pling methods do not require rigorous bounds on mixing times
to work, they will not run efficiently on a slowly mixing chain.
The point is that for a chain that has the right structure and that
actually mixes quickly (despite an absence of a rigorous bound
on the mixing time), algorithms like CFTP can be used to rig-
orously generate perfect samples. However, the

√
ε test applies

to any reversible Markov chain, regardless of the structure, and
has running time k chosen by the user. Importantly, it is quite
possible that the test can detect bias in a sample even when k is
much smaller than the mixing time of the chain, which seems to
be the case in the districting example discussed in Detecting Bias
in Political Districting. Of course, unlike perfect sampling meth-
ods, the

√
ε test can only be used to show that a given sample is

not chosen from π; it does not give a way for generating samples
from π.

Definitions
We remind the reader that a Markov chain is a discrete time ran-
dom process; at each step, the chain jumps to a new state, which
only depends on the previous state. Formally, a Markov chainM
on a state space Σ is a sequenceM=X0,X1,X2, . . . of random
variables taking values in Σ (which correspond to states that may
be occupied at each step), such that, for any σ, σ0, . . . , σn−1 ∈ Σ,

Pr(Xn = σ|X0 = σ0,X1 = σ1, . . . ,Xn−1 = σn−1)

= Pr(X1 = σ|X0 = σn−1).

Note that a Markov chain is completely described by the distribu-
tion of X0 and the transition probabilities Pr(X1 =σ1|X0 =σ0)
for all pairs σ0, σ1 ∈ Σ. Terminology is often abused, so that the
Markov chain refers only to the ensemble of transition probabil-
ities, regardless of the choice of distribution for X0.

With this abuse of terminology, a stationary distribution for
the Markov chain is a distribution π, such that X0∼π implies
that X1∼π and therefore, that Xi ∼π for all i . When the dis-
tribution of X0 is a stationary distribution, the Markov chain
X0,X1, . . . is said to be stationary. A stationary chain is said
to be reversible if, for all i , k , the sequence of random variables
(Xi ,Xi+1, . . . ,Xi+k ) is identical in distribution to the sequence
(Xi+k ,Xi+k−1, . . . ,Xi). Finally, a chain is reducible if there is a
pair of states σ0, σ1, such that σ1 is inaccessible from σ0 via legal
transitions and irreducible otherwise.

A simple example of a Markov chain is a random walk on a
directed graph beginning from an initial vertex X0 chosen from
some distribution. Here, Σ is the vertex set of the directed graph.
If we are allowed to label the directed edges with positive reals
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and if the probability of traveling along an arc is proportional
to the label of the arc (among those leaving the present vertex),
then any Markov chain has such a representation, because the
transition probability Pr(X1 =σ1|X0 =σ0) can be taken as the
label of the arc from σ0 to σ1. Finally, if the graph is undirected,
the corresponding Markov chain is reversible.

Detecting Bias in Political Districting
A central feature of American democracy is the selection of Con-
gressional districts in which local elections are held to directly
elect national representatives. Because a separate election is held
in each district, the proportions of party affiliations of the slate
of representatives elected in a state do not always match the pro-
portions of statewide votes cast for each party. In practice, large
deviations from this seemingly desirable target do occur.

Various tests have been proposed to detect “gerrymandering”
of districting, in which a district is drawn in such a way as to bias
the resulting slate of representatives toward one party, which can
be accomplished by concentrating voters of the unfavored party
in a few districts. One class of methods to detect gerrymandering
concerns heuristic “smell tests,” which judge whether districting
seems generally reasonable in its statistical properties (11, 12).
For example, such tests may frown on districting in which differ-
ence between the mean and median votes on district by district
basis is unusually large (13).

The simplest statistical smell test, of course, is whether the
party affiliation of the elected slate of representatives is close in
proportion to the party affiliations of votes for representatives.
Many states have failed this simple test spectacularly, such as in
Pennsylvania; in 2012, 48.77% of votes were cast for Republican
representatives and 50.20% of votes were cast for Democrat rep-
resentatives in an election that resulted in a slate of 13 Republi-
can representatives and 5 Democrat representatives.

Heuristic statistical tests such as these all suffer from lack of
rigor, however, because of the fact that the statistical proper-
ties of “typical” districting are not rigorously characterized. For
example, it has been shown (14) that Democrats may be at a nat-
ural disadvantage when drawing electoral maps, even when no
bias is at play, because Democrat voters are often highly geo-
graphically concentrated in urban areas. Particularly problematic
is that the degree of geographic clustering of partisans is highly
variable from state to state: what looks like gerrymandered dis-
tricting in one state may be a natural consequence of geography
in another.

Some work has been done in which the properties of valid dis-
tricting are defined (which may be required to have roughly equal
populations among districts, districts with reasonable bound-
aries, etc.), so that the characteristics of a given districting can
be compared with what would be typical for valid districting of
the state in question, by using computers to generate random
districting (15, 16); there is discussion of this in ref. 13. However,
much of this work has relied on heuristic sampling procedures,

Fig. 2. (Left) The current districting of Pennsylvania. (Right) Districting produced by the Markov chain after 240 steps. (Detailed parameters for this run are
given in SI Text.)

which do not have the property of selecting districting with equal
probability (and more generally, distributions that are not well-
characterized), undermining rigorous statistical claims about the
properties of typical districts.

In an attempt to establish a rigorous framework for this kind
of approach, several groups (17–19) have used Markov chains to
sample random valid districting for the purpose of such compar-
isons. Like many other applications of real-world Markov chains,
however, these methods suffer from the completely unknown
mixing time of the chains in question. Indeed, no work has even
established that the Markov chains are irreducible (in the case of
districting, irreducibility means that any valid districting can be
reached from any other by a legal sequence of steps), even if valid
districting was only required to consist of contiguous districts of
roughly equal populations. Additionally, indeed, for very restric-
tive notions of what constitutes valid districting, irreducibility
certainly fails.

As a straightforward application of the
√
ε test, we can achieve

rigorous p values in Markov models of political districting,
despite the lack of bounds on mixing times of the chains. In par-
ticular, for all choices of the constraints on valid districting that
we tested, the

√
ε test showed that the current Congressional dis-

tricting of Pennsylvania is an outlier at significance thresholds
ranging from p≈ 2.5 · 10−4 to p≈ 8.1 · 10−7. Detailed results of
these runs are in SI Text.

A key advantage of the Markov chain approach to gerryman-
dering is that it rests on a rigorous framework, namely comparing
the actual districting of a state with typical (i.e., random) district-
ing from a well-defined set of valid districting. The rigor of the
approach thus depends on the availability of a precise definition
of what constitutes valid districting; in principle and in practice,
the best choice of definition is a legal question. Although some
work on Markov chains for redistricting (in particular, ref. 19)
has aimed to account for complex constraints on valid districting,
our main goal in this manuscript is to illustrate the application of
the
√
ε test. In particular, we have erred on the side of using rela-

tively simple sets of constraints on valid districting in our Markov
chains, while checking that our significance results are not highly
sensitive to the parameters that we use. However, our test imme-
diately gives a way of putting the work, such as that in ref. 19, on
a rigorous statistical footing.

The full description of the Markov chain that we use in this
work is given in SI Text, but its basic structure is as follows:
Pennsylvania is divided into roughly 9,000 census blocks. (These
blocks can be seen on close inspection of Fig. 2.) We define a
division of these blocks into 18 districts to be a valid districting of
Pennsylvania if districts differ in population by less than 2%, are
contiguous, are simply connected (districts do not contain holes),
and are “compact” in ways that we discuss in SI Text; roughly,
this final condition prohibits districts with extremely contorted
structure. The state space of the Markov chain is the set of
valid districting of the state, and one step of the Markov chain
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consists of randomly swapping a precinct on the boundary of a
district to a neighboring district if the result is still a valid dis-
tricting. As we discuss in SI Text, the chain is adjusted slightly to
ensure that the uniform distribution on valid districting is indeed
a stationary distribution for the chain. Observe that this Markov
chain has a potentially huge state space; if the only constraint on
valid districting was that the districts have roughly equal popu-
lation, there would be 1010000 or so valid districtings. Although
contiguity and especially, compactness are severe restrictions
that will decrease this number substantially, it seems difficult
to compute effective upper bounds on the number of result-
ing valid districtings, and certainly, it is still enormous. Impres-
sively, these considerations are all immaterial to our very general
method.

Applying the
√
ε test involves the choice of a label function

ω(σ), which assigns a real number to each districting. We have
conducted runs using two label functions: ωvar is the (negative)
variance of the proportion of Democrats in each district of the
districting (as measured by 2012 presidential votes), and ωMM
is the difference between the median and mean of the propor-
tions of Democrats in each district; ωMM is motivated by the
fact that this metric has a long history of use in gerrymandering
and is directly tied to the goals of gerrymandering, whereas the
use of the variance is motivated by the fact that it can change
quickly with small changes in districtings. These two choices
are discussed further in SI Text, but an important point is that
our use of these label functions is not based on an assumption
that small values of ωvar or ωMM directly imply gerrymandering.
Instead, because Theorem 1.1 is valid for any fixed label func-
tion, these labels are tools used to show significance, which are
chosen because they are simple and natural functions on vectors
that can be quickly computed, seem likely to be different for typ-
ical versus gerrymandered districtings, and have the potential to
change relatively quickly with small changes in districtings. For
the various notions of valid districtings that we considered, the√
ε test showed significance at p values in the range from 10−4

to 10−5 for the ωMM label function and the range from 10−4 to
10−7 for the ωvar label function (see Fig. S1 and Table S1).

As noted earlier, the
√
ε test can easily be used with more com-

plicated Markov chains that capture more intricate definitions of
the set of valid districtings. For example, the current districting
of Pennsylvania splits fewer rural counties than the districting in
Fig. 2, Right, and the number of county splits is one of many met-
rics for valid districtings considered by the Markov chains devel-
oped in ref. 19. Indeed, our test will be of particular value in cases
where complex notions of what constitute valid districting slow
the chain to make the heuristic mixing assumption particularly
questionable. Regarding mixing time, even our chain with rela-
tively weak constraints on the districtings (and very fast running
time in implementation) seems to mix too slowly to sample π,
even heuristically; in Fig. 2, we see that several districts still seem
to have not left their general position from the initial districting,
even after 240 steps.

On the same note, it should also be kept in mind that, although
our result gives a method to rigorously disprove that a given dis-
tricting is unbiased—e.g., to show that the districting is unusual
among districtings X0 distributed according to the stationary
distribution π—it does so without giving a method to sample
from the stationary distribution. In particular, our method can-
not answer the question of how many seats Republicans and
Democrats should have in a typical districting of Pennsylvania,
because we are still not mixing the chain. Instead, Theorem 1.1
has given us a way to disprove X0∼π without sampling π.

Proof of Theorem 1.1
We let π denote any stationary distribution forM and suppose
that the initial state X0 is distributed as X0∼π, so that in fact,

Xi ∼π for all i . We say σj is `-small among σ0, . . . , σk if there
are, at most, ` indices i 6= j among 0, . . . , k , such that the label of
σi is, at most, the label of σj . In particular, σj is 0-small among
σ0, σ1, . . . , σk when its label is the unique minimum label, and we
encourage readers to focus on this `= 0 case in their first reading
of the proof.

For 0 ≤ j ≤ k , we define

ρkj ,` := Pr (Xj is `-small among X0, . . . ,Xk )

ρkj ,`(σ) := Pr(Xj is `-small among X0, . . . ,Xk | Xj = σ).

Observe that, because Xs ∼π for all s , we also have that

ρkj ,`(σ) =

Pr (Xs+j is `-small among Xs , . . . ,Xs+k | Xs+j = σ). [1]

We begin by noting two easy facts.

Observation 4.1.

ρkj ,`(σ) = ρkk−j ,`(σ).

Proof. Because M=X0,X1, . . . is stationary and reversible,
the probability that (X0, . . . ,Xk ) = (σ0, . . . , σk ) is equal to
the probability that (X0, . . . ,Xk ) = (σk , . . . , σ0) for any fixed
sequence (σ0, . . . , σk ). Thus, any sequence (σ0, . . . , σk ) for
which σj =σ and σj is a `-small corresponds to an equiprob-
able sequence (σk , . . . , σ0), for which σk−j =σ and σk−j is
`-small. �

Observation 4.2.

ρkj ,2`(σ) ≥ ρjj ,`(σ) · ρk−j
0,` (σ).

Proof. Consider the events that Xj is an `-small among
X0, . . . ,Xj and among Xj , . . . ,Xk . These events are condition-
ally independent when conditioning on the value of Xj =σ, and
ρjj ,`(σ) gives the probability of the first of these events, whereas
applying Eq. 1 with s = j gives that ρk−j

0,` (σ) gives the probability
of the second event.

Finally, when both of these events happen, we have that Xj is
2`-small among X0, . . . ,Xk . �

We can now deduce that

ρkj ,2`(σ)≥ ρjj ,`(σ) · ρk−j
0,` (σ) = ρj0,`(σ) · ρk−j

0,` (σ)

≥
(
ρk0,`(σ)

)2
. [2]

Indeed, the first inequality follows from Observation 4.2, the
equality follows from Observation 4.1, and the final inequality
follows from the fact that ρkj ,`(σ) is monotone nonincreasing in k
for fixed j , `, σ.

Observe now that ρkj ,` = E ρkj ,`(Xj ), where the expectation is
taken over the random choice of Xj ∼ π.

Thus, taking expectations in Eq. 2, we find that

ρkj ,2` = Eρkj ,2`(σ) ≥ E
((

ρk0,`(σ)
)2)

≥
(

Eρk0,`(σ)
)2

= (ρk0,`)
2
, [3]

where the second of the two inequalities is the Cauchy–Schwartz
inequality.

For the final step in the proof, we sum the left- and right-hand
sides of Eq. 3 to obtain

k∑
j=0

ρkj ,2` ≥ (k + 1)(ρk0,`)
2
.
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If we let ξj (0≤ i ≤ k) be the indicator variable that is one when-
ever Xj is 2`-small among X0, . . . ,Xk , then

∑k
j=0 ξj is the num-

ber of 2`-small terms, which is always, at most, 2`+1. Therefore,
linearity of expectation gives that

2`+ 1 ≥ (k + 1)(ρk0,`)
2
, [4]

giving that

ρk0,` ≤
√

2`+ 1

k + 1
. [5]

Theorem 1.1 follows, because if Xi is an ε-outlier among
X0, . . . ,Xk , then Xi is necessarily `-small among X0, . . . ,Xk

for ` = bε(k + 1) − 1c ≤ ε(k + 1) − 1, and then, we have
2`+ 1 ≤ 2ε(k + 1)− 1 ≤ 2ε(k + 1).
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24. Frieze A, Karoński M (2015) Introduction to Random Graphs (Cambridge Univ Press,
Cambridge, UK).

2864 | www.pnas.org/cgi/doi/10.1073/pnas.1617540114 Chikina et al.

http://imai.princeton.edu/research/files/redist.pdf
https://services.math.duke.edu/projects/gerrymandering
https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/21919
https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/21919
https://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.pnas.org/cgi/doi/10.1073/pnas.1617540114


Supporting Information
Chikina et al. 10.1073/pnas.1617540114
SI Text
S1. Precinct Data. Precinct-level voting data and associated shape
files were obtained from the Harvard Election Data Archive
(projects.iq.harvard.edu/eda/home) (20). The data for Pennsyl-
vania contain 9,256 precincts. The data were altered in two ways:
258 precincts that were contained within another precinct were
merged and 79 precincts that were not contiguous were split into
continuous areas, with voting and population data distributed
proportional to the area. The result was a set of 9,060 precincts.
All geometry calculations and manipulations were accomplished
in R with “maptools,” “rgeos,” and “BARD” R packages. The
final input to the Markov chain is a set of precincts with corre-
sponding areas, neighbor precincts, the length of the perimeter
shared with each neighbor, voting data from 2012, and the cur-
rent Congressional district to which the precinct belongs.

S2. Valid Districting. We restrict our attention to districtings sat-
isfying four restrictions, each of which we describe here.
S2.1. Contiguous districts. A valid districting must have the prop-
erty that each of its districts is contiguous. In particular, two
precincts are considered adjacent if the length of their shared
perimeter is nonzero (in particular, precincts meeting only at a
point are not adjacent), and a district is contiguous if any pair of
precincts is joined by a sequence of consecutively adjacent pairs.
S2.2. Simply connected districts. A valid districting must have the
property that each of its districts is simply connected. Roughly
speaking, this constraint means the district cannot have a “hole.”
Precisely, a district is simply connected if, for any circuit of
precincts in the district, all precincts in the region bounded by
the circuit also are in the district.

Apart from aesthetic reasons for insisting that districtings sat-
isfy this condition, there is also a practical reason: it is easier to
have a fast local check for contiguity when one is also maintain-
ing that districtings are simply connected.
S2.3. Small population difference. According to the “one per-
son, one vote” doctrine, Congressional districts for a state are
required to be roughly equal in population. In the current dis-
tricting of Pennsylvania, for example, the maximum difference in
district population from the average population is roughly 1%.
Our chain can use different tolerances for population difference
between districts and the average, and the tolerances used in the
runs below are indicated.
S2.4. Compactness. If districtings were drawn randomly with only
the first three requirements, the result would be districtings
in which districts have very complicated, fractal-like structure
(because most districtings have this property). The final require-
ment on valid districtings prevents this by ensuring that the dis-
tricts in the districting have a reasonably nice shape. This require-
ment on district shape is commonly termed “compactness” and
explicitly required of Congressional districts by the Pennsylvania
Constitution.

Although compactness of districts does not have a precise legal
definition, various precise metrics have been proposed to quan-
tify the compactness of a given district mathematically. One of
the simplest and most commonly used metrics is the Polsby–
Popper metric, which defines the compactness of a district as

CD =
4πAD

P2
D

,

where AD and PD are the area and perimeter of the district D ,
respectively. Note that the maximum value of this measure is
one, which is achieved only by the disk as a result of the isoperi-

metric inequality. All other shapes have compactness between
zero and one, and smaller values indicate more “contorted”
shapes.

Perhaps the most straightforward use of this compactness
measure is to enforce some threshold on compactness and
require valid districtings to have districts with compactness that is
above that lower bound. (For consistency with our other metrics,
we actually impose an upper bound on the reciprocal 1/CD of
the Polsby–Popper compactness CD of each district D .) In Table
S1, this metric is the L∞ compactness metric.

One drawback of using this method is that the current district-
ing of Pennsylvania has a few districts that have very low com-
pactness values (they are much stranger looking than the other
districts). Applying this restriction will allow all 18 districts to be
as bad as the threshold chosen, so that, in particular, we will be
sampling districtings from space in which all 18 districts may be as
bad as the worst district in the current plan. In fact, because there
are more noncompact regions than compact ones, one expects
that, in typical such districting, all 18 districts would be nearly as
bad as the currently worst example.

To address this issue and also, to show the robustness of our
finding for the districting question, we also consider some alter-
nate restrictions on the districting, which measure how reason-
able the districting as a whole is with regard to compactness. For
example, one simple measure of this is to have a threshold for
the maximum allowable sum

1

C1
+ · · ·+ 1

C18

of the inverse compactness values of 18 districts. This metric is
the L1 metric in Table S1. Similarly, we could have a threshold
for the maximum allowable sum of squares

1

C 2
1

+ · · ·+ 1

C 2
18

.

This metric is the L2 metric in Table S1. Finally, we can have a
simple condition that simply ensures that the total perimeter

P1 + · · ·+ P18

is less than some threshold.
S2.5. Other possible constraints. It is possible to imagine many
other reasonable constraints on valid districtings. For example,
the Pennsylvania Constitution currently requires of districtings
for the Pennsylvania Senate and Pennsylvania House of Repre-
sentatives that, unless absolutely necessary, no county, city, incor-
porated town, borough, township, or ward shall be divided in
forming either a senatorial or representative district.

There is no similar requirement for US Congressional districts
in Pennsylvania, which is what we consider here, but it is still a
reasonable constraint to consider.

There are also interesting legal questions about the extent to
which majority–minority districts (in which an ethnic minority is
an electoral majority) are either required to be intentionally cre-
ated or forbidden to be intentionally created. On the one hand,
the US Supreme Court ruled in Thornburg v. Gingles (1986)
that, in certain cases, a geographically concentrated minority
population is entitled to a Congressional district in which it con-
stitutes a majority. On the other hand, in several US Supreme
Court cases [Shaw v. Reno (1993), Miller v. Johnson (1995), and
Bush v. Vera (1996)], Congressional districtings were thrown out,
because they contained intentionally drawn majority–minority
districts that were deemed to be a “racial gerrymander.” In any
case, we have not attempted to answer the question of whether or
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how the existence of majority–minority districts should be quan-
tified. (We suspect that the unbiased procedure of drawing a ran-
dom districting is probably acceptable under current majority–
minority district requirements, but in any case, our main intent is
to show the application of the

√
ε test.)

Importantly, we emphasize that any constraint on districtings
that can be precisely defined (i.e., by giving an algorithm that can
identify whether a districting satisfies the constraint) can be used
in the Markov chain setting in principle.

S3. The Markov Chain. The Markov chainM that we use has as its
state space Σ, the space of all valid districtings (with 18 districts)
of Pennsylvania. Note that there is no simple way to enumerate
these, and there is an enormous number of them.

A simple way to define a Markov chain on this state space is to
transition as follows.

i) From the current state, determine the set S of all pairs
(ρ,D), where ρ is a precinct in some district Dρ, and D 6= Dρ

is a district that is adjacent to ρ. Let NS denote the size of
this set.

ii) From S , choose one pair (ρ0,D0) uniformly at random.
iii) Change the district membership of ρ0 from Dρ0 to D0 if the

resulting district is still valid.

Let the Markov chain with these transition rules be denoted
byM0. This chain is a perfectly fine reversible Markov chain to
which our theorem applies, but the uniform distribution on valid
districtings is not stationary for M0; therefore, we cannot use
M0 to make comparisons between a presented districting and a
uniformly random valid districting.

A simple way to make the uniform distribution stationary is
to “regularize” the chain (that is, to modify the chain so that the
number of legal steps from any state is equal). (M0 is not already
regular, because the number of precincts on the boundaries of
districts will vary from districting to districting.) We do this by
adding loops to each possible state. In particular, using a theo-
retical maximum Nmax on the possible size of NS for any district,
we modify the transition rules as follows.

i) From the current state, determine the set S of all pairs
(ρ,D), where ρ is a precinct in some district Dρ, and D 6= Dρ

is a district that is adjacent to ρ. Let NS denote the size of
this set.

ii) With probability 1− NS
Nmax

, remain in the current state for this
step. With probability NS

Nmax
, continue as follows.

iii) From S , choose one pair (ρ0,D0) uniformly at random.
iv) Change the district membership of ρ0 from Dρ0 to D0 if the

resulting district is still valid. If it is not, remain in the current
district for this set.

In particular, with this modification, each state has exactly
Nmax possible transitions, which are each equally likely; many of
these transitions are loops back to the same state. (Some of these
loops arise from step ii, but some also arise when the if condition
in step iv fails.)

S4. The Label Function. In principle, any label function ω could be
used in the application of the

√
ε test; note that Theorem 1.1

places no restrictions on ω. Thus, when we choose which label
function to use, we are making a choice based on what is likely
to achieve good significance rather than what is valid statistical
reasoning (subject to the caveat discussed below). To choose a
label function that was likely to allow good statistical power, we
want to have a function that is

i) likely very different for a gerrymandered districting compared
with a typical districting and

ii) sensitive enough that small changes in the districting might be
detected in the label function.

Although the role of the first condition in achieving outlier sta-
tus is immediately obvious, the second property is also crucial to
detecting significance with our test, which makes use of trajecto-
ries that may be quite small compared with the mixing time of
the chain. For the

√
ε test to succeed at showing significance, it

is not enough for the presented state σ0 to actually be an out-
lier against π with respect to ω; this outlier status must also be
detectable on trajectories of the fixed length k , which may well
be too small to mix the chain. This second property discourages
the use of “coarse-grained” label functions, such as the number
of seats of 18 that the Democrats would hold with the district-
ing in question, because many swaps would be needed to shift a
representative from one party to another.

We considered two label functions for our experiments (each
selected with the above desired properties in mind) to show the
robustness of our framework. The first label function ωvar that we
used is simply the negative of the variance in the proportions of
Democrat voters among the districts. Thus, given a districting σ,
ωvar(σ) is calculated as

ωvar(σ) = −

(
δ2
1 + δ2

2 + · · ·+ δ2
18

18
−
(
δ1 + δ2 + · · ·+ δ18

18

)2
)
,

where for each i = 1, . . . , 18, δi is the fraction of voters in
that district that voted for the Democrat presidential candidate
in 2012. We suspect that the variance is a good label function
from the standpoint of the first characteristic listed above but a
great label function from the standpoint of the second charac-
teristic. Recall that, in practice, gerrymandering is accomplished
by packing the voters of one party into a few districts, in which
they make up an overwhelming majority. This technique, natu-
rally, results in a high-variance vector of party proportions in
the districts. However, high-variance districtings can exist that
do not favor either party (note, for example, that the variance
is symmetric with respect to Democrats and Republicans, ignor-
ing third-party affiliations). Thus, for a districting that is biased
against π because of a partisan gerrymander to “stand out” as
an outlier, it must have especially high variance. In particular,
statistical significance will be weaker than it might be for a label
function that is more strongly correlated with partisan gerryman-
dering. However, ωvar can detect very small changes in the dis-
tricting, because essentially, every swap will either increase or
decrease the variance. Indeed, for the run of the chain corre-
sponding to the L∞ constraint (SI Text, Runs of the Chain),
ωvar(X0) was strictly greater than ωvar(Xi) for the entire trajec-
tory (1 ≤ i ≤ 240). That is, for the L∞ constraint, the current
districting of Pennsylvania was the absolute worst districting seen
according to ωvar among the more than 1 trillion districtings on
the trajectory.

The second label function that we considered is calculated sim-
ply as the difference between the median and the mean of the
ratios δ1, . . . , δ18. This simple metric, called the “Symmetry Vote
Bias” by McDonald and Best (13) and denoted as ωMM by us, is
closely tied to the goal of partisan gerrymandering. As a simple
illustration of the connection, we consider the case where the
median of the ratios δ1, . . . , δ18 is close to 1

2
. In this case, the

mean of the δi tracks the fraction of votes that the reference
party wins to win one-half of the seats. Thus, a positive Sym-
metry Vote Bias corresponds to an advantage for the reference
party, whereas a negative Symmetry Vote Bias corresponds to
a disadvantage. The use of the Symmetry Vote Bias in evaluat-
ing districtings dates at least to the 19th century work of Edge-
worth (21). These features make it an excellent candidate from
the standpoint of our first criterion: gerrymandering is very likely
to be reflected in outlier values of ωMM.

However, ωMM is a rather slow-changing function compared
with ωvar. Indeed, observe that, in the calculation

Symmetry Vote Bias = median−mean,
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the mean is essentially fixed, so that changes in ωMM depend on
changes in the median. In initial changes to the districting, only
changes to the 2 districtings giving rise to the median (2 because
18 is even) can have a significant impact on ωMM. (However,
changes to any district directly affect ωvar.)

It is likely possible to make better choices for the label func-
tion ω to achieve better significance. For example, the metric BG

described by Nagle (12) seems likely to be excellent from the
standpoints of conditions i and ii simultaneously. However, we
have restricted ourselves to the simple choices of ωvar and ωMM
to clearly show our method and make it obvious that we have not
tried many labeling functions before finding some that worked
(in which case, a multiple hypothesis test would be required).

One point to keep in mind is that, often when applying the
√
ε

test—including in this application to gerrymandering—we will
wish to apply the test and thus, need to define a label function
after the presented state σ0 is already known. In these cases, care
must be taken to choose a “canonical” label function ω, so that
there is no concern that ω was carefully crafted in response to σ0

(in this case, a multiple hypothesis correction would be required
for the various possible ω values that could have been crafted
depending on σ0); ωvar and ωMM are excellent choices from this
perspective: the variance is a common and natural function on
vectors, and the Symmetry Vote Bias has an established history
in the evaluation of gerrymandering (and in particular, a history
that predates the present districting of Pennsylvania).

S5. Runs of the Chain. In Table S1, we give the results of eight runs
of the chain under various conditions. Each run was for k = 240

steps. Code and input data for our Markov chain are available at
the website of W.P. (math.cmu.edu/∼wes).

Generally, after an initial “burn-in” period, we expect the
chain to (almost) never again see states as unusual as the cur-
rent districting of Pennsylvania, which means that we expect the
test to show significance proportional to the inverse of the square
root of the number of steps (i.e., the p value at 242 steps should
be one-half the p value at 240 steps). In particular, for the L1,
L2, and L∞ constraints, these runs never revisited states as bad
as the initial state after 221 steps for the ωMM label and after 26

steps for the ωvar label. Note that this agrees with our guess that
ωvar had the potential to change more quickly than ωMM. The
perimeter constraint did revisit enough states as bad as the given
state with respect to the ωvar label to adversely affect its p value
with respect to the ωvar label. This observation may reflect our
guess that the ωvar label is worse than the ωMM label in terms
of how easily it can distinguish gerrymandered districtings from
random ones.

The parameters for the first row were used for Fig. 2.
One quick point is that, although we have experimented here

with different compactness measures, there is no problem of
multiple hypothesis correction to worry about, because every run
that we encountered produces strong significance for the bias of
the initial districting. The point of experimenting with the notion
of compactness is to show that this is a robust framework and that
the finding is unlikely to be sensitive to minor disagreements over
the proper definition of the set of valid districtings.

S6. An Example Where p≈
√
ε Is Best Possible. It might be natu-

ral to suspect that observing ε-outlier status for σ on a random
trajectory from σ is significant at something like p≈ ε instead of
the significance p≈

√
ε established by Theorem 1.1. However,

because Theorem 1.1 places no demand on the mixing rate of
M, it should instead seem remarkable that any significance can
be shown in general, and indeed, we show by example in this sec-
tion that significance at p≈

√
ε is essentially best possible.

Let N be some large integer. We letM be the Markov chain
where X0 is distributed uniformly in [0, 1, 2, . . . ,N − 1], and for
any i ≥ 1, Xi is equal to Xi−1+ζi computed modulo N , where ζi

is 1 or −1 with probability 1/2. Note that the chain is stationary
and reversible.

If N is chosen large relative to k , then with probability arbi-
trarily close to one the value of X0 is at distance greater than
k from zero (in both directions). Conditioning on this event, we
have that X0 is minimum among X0, . . . ,Xk if and only if all
of the partial sums

∑j
i=1 ζi are positive. The probability of this

event is just the probability that a k -step 1D random walk from
the origin takes a first step to the right and does not return to the
origin. The calculation of this probability is a classical problem in
random walks, which can be solved using the reflection principle.

In particular, for k even, the probability is given by

1

2k+1

(
k

k/2

)
∼ 1√

2πk
.

Because being the minimum of X0, . . . ,Xk corresponds to
being an ε-outlier for ε = 1/k + 1, this example shows that the
probability of being an ε-outlier can be as high as

√
ε/2π.

The best possible value of the constant in the
√
ε test seems to

be an interesting problem for future work.

S7. Notes on Statistical Power. The effectiveness of the
√
ε test

depends on the availability of a good choice for ω and the ability
to run the test for long enough (in other words, choose k large
enough) to detect that the presented state is a local outlier.

It is possible, however, to make a general statement about the
power of the test when k is chosen large relative to the actual
mixing time of the chain. Recall that one potential application
of the test is in situations where the mixing time of the chain is
actually accessible through reasonable computational resources,
although this fact cannot be proved rigorously, because theoret-
ical bounds on the mixing time are not available. In particular,
we do know that the test is very likely to succeed when k is suffi-
ciently large and ω(σ0) is atypical.

Theorem S1. LetM be a reversible Markov chain on Σ, and
let ω : Σ→ R be arbitrary. Given σ0, suppose that, for a random
state σ ∼ π, Pr(ω(σ) ≤ ω(σ0)) ≤ ε. Then, with probability
at least

ρ ≥ 1−
(

1 +
εk

10τ2

)
1√
πmin

exp

(
−ε2k

20τ2

)
,

ω(σ) is an 2ε-outlier among ω(σ0), ω(σ1), . . . , ω(σk ), where
σ0, σ1, . . . is a random trajectory starting from σ0.

Here, τ2 is the relaxation time for M defined as 1/(1 − λ2),
where λ2 is the second eigenvalue of M. τ2 is thus the inverse
of the spectral gap for M and intimately related to the mixing
time ofM (22–24). The probability ρ in Theorem S1 converges
exponentially quickly to 1 and moreover, is very close to one after
k is large relative to τ2. In particular, Theorem S1 shows that the√
ε test will work when the test is run for long enough. Of course,

one strength of the
√
ε test is that it can sometimes show bias,

even when k is far too small to mix the chain, which is almost
certainly the case for our application to gerrymandering. When
these short-k runs are successful at detecting bias is, of course,
dependent on the relationship of the presented state σ0 and its
local neighborhood in the chain.

Theorem S1 is an application of the following theorem of
Gillman.

Theorem S2. Let M = X0,X1, . . . be a reversible Markov
chain on Σ, let A ⊂ Σ, and let Nk (A) denote the number of
visits to A among X0, . . . ,Xk . Then, for any γ > 0,

Pr(Nk (A)/n − π(A) > γ) ≤
(

1 +
γn

10τ2

)√√√√∑
σ

Pr(X0 = σ)2

π(σ)

× exp

(
−γ2n

20τ2

)
.
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Proof of Theorem S1. We apply Theorem S2, with A as the set of
states σ ∈ Σ, such that ω(σ) ≤ ω(σ0), X0 =σ0, and γ= ε. By
assumption, π(A) ≤ ε, and Theorem S2 gives that

Pr(Nk (A)/k > 2ε) ≤
(

1 +
εk

10τ2

)√
1

πmin
exp

(
−ε2k

20τ2

)
.

�

S8. A Result for Small Variation Distance. In this section, we give a
corollary of Theorem 1.1 that applies to the setting where X0 is
not distributed as a stationary distribution π but instead, is dis-
tributed with small total variation distance to π.

The total variation distance ||ρ1 − ρ2||TV between probability
distributions ρ1, ρ2 on a probability space Ω is defined to be

||ρ1 − ρ2||TV := sup
E⊆Ω

|ρ1(E)− ρ2(E)|. [S1]

Corollary S1. Let M=X0,X1, . . . be a reversible Markov
chain with a stationary distribution π, and suppose that the
states of M have real-valued labels. If ||X0 − π||TV ≤ ε1, then
for any fixed k , the probability that the label of X0 is an
ε-outlier from among the list of labels observed in the trajectory
X0,X1,X2, . . . ,Xk is, at most,

√
2ε+ ε1.

Fig. S1. The last state from each of the above runs of the chain (perimeter, L1, L2, and L∞, respectively). Note that the L∞ districting is quite ugly; with
this notion of validity, every district among the 18 is allowed to be as noncompact as the worst district in the current Pennsylvania districting. The perimeter
constraint produces a districting that appears clean at a large scale but allows rather messy city districts, because they contribute only moderately to the
perimeter anyway. The L1 and L2 constraints are more balanced. Note that none of these districtings should be expected to be geometrically “nicer” than
the current districting of Pennsylvania. Indeed, the point of our Markov chain framework is to compare the present districting of Pennsylvania with other
“just as bad” districtings to observe that, even among this set, the present districting is atypical.

Table S1. Runs of the redistricting Markov chain with results of the
√

ε test

Population Compactness Compactness Initial (Steps) Label ε-Outlier Significant
threshold,% measure threshold value k = function at ε = at p =

2 Perimeter ≤ 125 121.2 . . . 240 ωvar 3.0974 · 10−8 2.4889 · 10−4

ωMM 5.7448 · 10−10 3.3896 · 10−5

2 L1 ≤ 160 156.4 . . . 240 ωvar 5.0123 · 10−11 1.0012 · 10−5

ωMM 5.6936 · 10−10 3.3745 · 10−5

2 L2 ≤ 44 43.06 . . . 240 ωvar 8.2249 · 10−11 1.2826 · 10−5

ωMM 6.8038 · 10−10 3.6888 · 10−5

2 L∞ ≤ 25 24.73 . . . 240 ωvar 3.3188 · 10−13 8.1472 · 10−7

ωMM 6.9485 · 10−8 3.7279 · 10−4

The theorem is intuitively clear; we provide a formal proof
below for completeness.

Proof. If ρ1, ρ2, and τ are probability distributions, then we have
that the product distributions (ρ1, τ) and (ρ2, τ) satisfy

||(ρ1, τ)− (ρ2, τ)||TV = ||ρ1 − ρ2||TV. [S2]

Our plan now is to split the randomness in the trajectory
X0, . . . ,Xk of the Markov chain into two independent sources:
the initial distribution is X0 ∼ ρ, and τ is the uniform distribution
on sequences of length k of real numbers r1, r2, . . . , rk in [0, 1].
We can view the distribution of the trajectory X0,X1, . . . ,Xk as
the product (ρ, τ) by using sequences of reals r1, . . . , rk to choose
transitions in the chain; from Xi =σi , if there are L transitions
possible, with probabilities p1, . . . , pL. Then, we make the tth
possible transition if ri ∈ [p1 + · · ·+ pt−1, p1 + · · ·+ pt−1 + pt).

Now we have from Eq. S2 that, if ||ρ − π||TV ≤ ε1,
then ||(ρ, τ) − (π, τ)||TV ≤ ε1. Therefore, any event that
would happen with probability at most p for the sequence
X0, . . . ,Xk when X0∼π must happen with probability at most
p + ε1 when X0∼ ρ, where ||ρ − π||TV ≤ ε1. The corollary
follows. �
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